April 25, 2025
Global Renewable News

ERAMET
EuGeLi project: extracting European lithium for future electric vehicle batteries

December 20, 2021

European Geothermal Lithium Brine (EuGeLi) is a collaborative research and innovation project whose principal aim is to validate an active-solid process co-developed by Eramet, achieve better estimates of lithium reserves contained in European geothermal deposits, and develop a profitable economic model that covers the entire process, from the extraction of the lithium to its refinement into battery-quality products. 

A consortium of nine partners, including manufacturers, academic institutions, and research centers, was assembled for this project, which began in January 2019 and will conclude in December 2021. Nearly 85% of its 3.9m budget was financed by EIT-Raw Materials, an institution of the European Union. 

In May 2021, Eramet and its partner Electricité de Strasbourg announced the success of the first pilot  carried out in the geothermal plant of Rittershoffen (close to the border between France and Germany). This is a world premiere.

The challenge: developing an efficient and eco-friendly extraction process

To carry out this project, a direct extraction unit was installed on the reinjection branch of an existing geothermal well. 

This unit is composed of columns filled with the active solid, a pellet-shaped material which serves as a "sponge" that selectively extracts the lithium (loading). Once depleted, the brine may then be reinjected into the sub-soil.

The lithium is recovered by adding low-salinity water to these columns (elution). The result is a concentrated lithium solution that will be purified before precipitating the battery-quality lithium carbonate. 

This direct extraction process was developed for the Lithium Project in Argentina. The active material was formulated to be used at room temperature and atmospheric pressure. 

The main challenge of the EuGeLi project is to adapt the process to European geothermal brines and their operating conditions, particularly the temperature and pressure conditions of the reinjection branch (80°C, 20 bars). 

Additionally, since the pumped-up brine is subsequently reinjected into the sub-soil, the lithium extraction process must not under any circumstances impact or disrupt the natural environment of the sub-soil.

Lastly, the end-product of the process, lithium carbonate, must be extremely pure in order to be used in lithium-ion batteries.

Read the full article.

For more information

Eramet

www.eramet.com


From the same organization :
1 Press releases